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Our Study in Short

What are the possible cardinalities of the Walsh supports?
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Basic Definitions

Definition

Walsh Transform: Wf (u) =
∑
x∈Fn

2

(−1)f (x)⊕u·x

Walsh support: Wsuppf = {u | Wf (u) ̸= 0}

Definition

We consider the following set: Cn = {|Wsuppf | | f ∈ Bn}.

Main Objective

Determine the sets Cn for n ∈ N.
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Motivations and Prior Works

Why do we study the Walsh support (cardinality)?

Cryptographic criteria: balancedness, resilience.

Plateaued functions [HPW18] and “2n − p ∈? Cn”.
Dahu functions [DMR21] (optimal AI and highest resilience).

What do we know? Not so much:

No Walsh support of cardinality s ∈ {2, 3, 5, 6, 7} [PQ00].

If s ∈ {1, 4, 8}, Wsuppf is an affine space [PQ00].

Properties and classification (n = 5) [CM04].

s = 2m [CM04,HPW18], s = 2m − 1 [CM04,LW24].
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Main Contributions

Contribution 1

Characterization of the Walsh supports of cardinalities 10 and 13.

Contribution 2

No Walsh support of cardinality s ∈ {9, 11, 12, 14, 15, 17, 19}.

Contribution 3

For n ≥ 7, Cn = [1, 2n] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19}.
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Siegenthaler’s Construction

Definition

Let f , g ∈ Bn, we define h = Sieg [f , g ] ∈ Bn+1 by

for x ∈ Fn
2, h(x , 0) = f (x) and h(x , 1) = g(x)

Concatenation of truth tables:

h∈B4︷ ︸︸ ︷
01010101︸ ︷︷ ︸

f∈B3

11110000︸ ︷︷ ︸
g∈B3

Any (n + 1)-variable function can be seen as a Siegenthaler’s

construction.

8



From Wsuppf and Wsuppg to Wsupph

Property

Wh(u, 0) = Wf (u) +Wg (u) and Wh(u, 1) = Wf (u)−Wg (u)

How to Compute Wsupph
Let u ∈ Wsuppf ∪Wsuppg

1- If |Wf (u)| ≠ |Wg (u)|: (u, 0), (u, 1) ∈ Wsupph.

2- If Wf (u) = (−1)vWg (u): (u, v) ∈ Wsupph and (u, 1+ v) /∈ Wsupph.

Seems promising to compute the cardinality of Wsupph!

Definition

K = Wsuppf ∩Wsuppg and Ξ = {u ∈ K | Wf (u) = ±Wg (u)}

Theorem

|Wsupph| = 2(|Wsuppf |+
∣∣Wsuppg

∣∣− |K |)− |Ξ|.
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Geometrical Visualization

u

Wf (u) | Wg (u)

(u, 0)

Wf (u) +Wg (u)

(u, 1)

Wf (u)−Wg (u)

Sieg

u

Sieg

Wf (u) | Wf (u)

(u, 0)

2Wf (u)

(u, 1)

0
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Construction of Wsupph of Cardinality 10

0 | 2n−1 2n−2| 0 2n−2| 0

2n−2| 0 2n−2| 0

2n−1 2n−2
2n−2

2n−2
2n−2

2n−1 2n−2 2n−2

2n−2
2n−2

f ∈ Bn−1,1

g ∈ Bn−1,4

|Ξ| = 0

|K | = 0

And we show (see paper) that all Walsh supports of cardinality 10 are

equivalent to this one.
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Walsh Supports Structure for s ≤ 13
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(s, t, k , ξ)-construction

Recall: K = Wsuppf ∩Wsuppg and Ξ = {u ∈ K | Wf (u) = ±Wg (u)}.

Definition

h such that |Wsupph| = r is a (s, t, k , ξ)-construction if

h = Sieg [f , g ]

|Wsuppf | = s,
∣∣Wsuppg

∣∣ = t, |K | = k , |Ξ| = ξ

(From the previous section: r = 2(s + t − k)− ξ)

15



(s, t, k , ξ)-construction

Recall: K = Wsuppf ∩Wsuppg and Ξ = {u ∈ K | Wf (u) = ±Wg (u)}.

Definition

h such that |Wsupph| = r is a (s, t, k , ξ)-construction if

h = Sieg [f , g ]

|Wsuppf | = s,
∣∣Wsuppg

∣∣ = t, |K | = k , |Ξ| = ξ

(From the previous section: r = 2(s + t − k)− ξ)

Remark: Impossible (s, t, k , ξ)

Many (s, t, k , ξ)-construction are not possible (e.g. (1, 1, 1, 0) would

give r = 2).

How do we keep track of the possible constructions?
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Construction Tables

Definition (Construction Table)

CTs,t is the table such that:

CTs,t
ξ,k = 2(s + t − k)− ξ,

If the cell (ξ, k) is colored then the (s, t, k , ξ) is not a possible con-

struction.

Construction Table CT1,1

ξ
k 0 1

0 4 2

1 1
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Sieving Method

Proposition

There exists Wsupph of cardinality r if and only if there exists h a

(s, t, k, ξ)-construction such that r = 2(s + t − k)− ξ with s, t < r .

9 is only in the impossible

constructions of

CT1,1,CT1,4,CT1,8,

CT4,4,CT4,8,CT8,8

=⇒ |Wsupph| = 9 is impossible.
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How to Color a Construction Table

Construction Table CT4,4

ξ
k 0 1 2 3 4

0 16 14 12 10 8

1 13 11 9 7

2 10 8 6

3 7 5

4 4
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How to Color a Construction Table

Construction Table CT4,4

ξ
k 0 1 2 3 4

0 16 14 12 10 8

1 13 11 9 7

2 10 8 6

3 7 5

4 4

Recall: Wsuppf and Wsuppg are affines planes.
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How to Color a Construction Table

Construction Table CT4,4

ξ
k 0 1 2 3 4

0 16 14 12 10 8

1 13 11 9 7

2 10 8 6

3 7 5

4 4

Conclusion: 9, 11, 12, 14 cannot be built with s = t = 4.
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The Impossible Cardinalities

2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19 only appear in the colored cells of

CTs,t for s, t ≤ 18!

Impossible Cardinalities (Contribution 2)

There is no Walsh support of cardinality

s ∈ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19}.
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Our Goal

Objective

From any Walsh support of cardinality s create a Walsh support of

cardinality ms + ℓ
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Example with Construction s → 4s + 3

|Wsuppf ′ | = 1|Wsuppf | = s

ω3| 0

ω1| 0 ω2| 0

0 | 2n

Fn
2

∣∣Wsuppg
∣∣ = 2s + 2

ω3

ω1 ω2

2n

(1, s, 0, 0)

Fn+1
2

∣∣Wsuppg
∣∣ = 2s + 2

∣∣Wsuppg′
∣∣ = 4

Fn+1
2

ω3|2n

ω2|2nω1|2n

2n|2n

(4, 2s + 2, 4, 1)

|Wsupph| = 4s + 3
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Generic Constructions

Construction (s → 4s)

If s ∈ Cn, then 4s ∈ Cn+2

Construction (s → 4s + 2)

If s ∈ Cn, then 4s + 2 ∈ Cn+2

Construction (s → 4s + 3)

If s ∈ Cn, then 4s + 3 ∈ Cn+2

Construction (s → 4s + 5)

If s ∈ Cn, then 4s + 5 ∈ Cn+2

Lemma: Induction

We denote by Pn: “Cn = [1, 2n] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19}”,
then

Pn and Pn+1 are true =⇒ Pn+2 is true.
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Cn for n ≥ 7

Property

For n = 7 and n = 8, we have

Cn = [1, 2n] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19}

Cardinalities of the Walsh Support (Contribution 3)

Let n ≥ 7, then

Cn = [1, 2n] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19}

(Cn for n ≤ 6 can be computed by exhaustive search through EA

equivalent classes thanks to Langevin’s online classification)
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Summary and Consequence

- (s, t, k, ξ)-construction to aim precise Walsh support cardinalities

e.g. plateaued functions or |Wsuppf | = 2n − 1

- e.g. 5 EA-ineq f ∈ B7 s.t. |Wsuppf | = 27 − 1 (1 in [LW24])

- Preneel and Logachev’s open question (“Cn =?”) [PL08].

Also from the paper:

Plateaued functions with non-affine Walsh support

Tools to study Walsh supports structure

and more!
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Thank you for your attention!

(... and that is the unique Walsh support of cardinality 18)
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