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1 Introduction

Functions from Fn
2 to F2 are called Boolean functions and are central to cryptography, coding theory, and

several branches of discrete mathematics. In this extended abstract , we focus on the Walsh transform of a
Boolean function, where the Walsh transform of the Boolean function f at the point a ∈ Fn

2 is defined as
Wf (a) :=

∑
x∈Fn

2
(−1)f(x)⊕a·x where a · x denotes the usual inner product in Fn

2 . More precisely, we focus
on the support of the Walsh transform of a function f Wsuppf := {a ∈ Fn

2 |Wf (a) ̸= 0}, and in particular
the attainable cardinalities of that set. For an integer n ≥ 1 we denote by Cn ⊂ N the set of cardinalities of
the Walsh support of Boolean functions in n variables.

The Walsh transform is the principal analytic tool for evaluating cryptographic indicators of Boolean
functions. Specifically, the nonlinearity of f is given by 2n−1 − 1

2 maxa∈Fn
2

∣∣Wf (a)
∣∣, while the order of

resilience equals the largest integer m for which Wf (a) = 0 whenever 1 ≤ wH(a) ≤ m, where wH denotes
the Hamming weight. Beyond these global parameters, the geometry of the Walsh support itself has recently
been exploited in the characterization of plateaued functions [7] and of spectra with only a few distinct
values [8, 14].

The Walsh support encodes resilience properties and provides insight into whether affine-equivalent
functions may exhibit improved resilience. A motivation to study this support arises from [5], which
investigates the existence and significance of Boolean functions combining optimal algebraic immunity
with high resilience. On the negative side, the structure of the Walsh support is used in [5] to rule out the
existence of 1-resilient functions within the affine equivalence class of majority functions in an odd number
of variables. On the positive side, a deeper understanding of the Walsh support may offer a foundation for
constructing functions that simultaneously achieve optimal algebraic immunity and high resilience. These
parameters are critical for instantiating Goldreich’s PseudoRandom Generator [6] (PRG) within the class
NC0, as explored in e.g. [1,4,13,15]. The existence of a secure PRG in NC01 has far-reaching implications
in cryptology, including the construction of indistinguishability obfuscation [9].

Despite its importance, the structure of the Walsh support remains poorly understood; even the set of its
possible cardinalities is not fully determined. To the best of our knowledge, the first systematic study was
conducted by Pei and Qin [11], who showed that a Walsh support cannot have cardinality 2, 3, 5, 6, or 7,
and fully characterized the cases of cardinalities 4 and 8. In 2004, Carlet and Mesnager [3] carried out a
more in-depth investigation. They enumerated all possible Walsh supports for functions in five variables ,
and studied in particular those with support Fn

2 \{0}. They proved that no such support arises for n ≤ 5, but
provided constructions for n ≥ 10. More recently, Lou and Wang [10] resolved the remaining open cases
for cardinality 2n − 1: they constructed examples for n ∈ {7, 8, 9}, and proved by exhaustive search that no
such function exists for n = 6.

From [3], we deduce that C5 = {1, 4, 8, 10, 13, 16, 18, 20, 21, 22, 23, 24, 25, 26, 28, 32}. Experimental
evidence shows that certain elements of [1, 25] which do not belong to C5 appear in C6 (e.g. 27, 29, 30, 31

1 Nick’s class 0, NC0 is the class of decision problems decidable by uniform Boolean circuits of constant depth and polynomial
size where each gate has bounded fan-in[a, b].



), while some elements of [25 + 1, 26] are absent from C6 (e.g. 63). These observations raise two main
questions: (1) Are there always missing elements in the interval [2n−1 + 1, 2n] for each n? (2) Which
elements not in Cn eventually belong to some Cm with m > n?

In this work, we show that for all n ≥ 7, the set Cn can be completely characterized as:

Cn = [1, 2n] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19}.

Our approach begins with a characterization of the structure of the Walsh support s of cardinality less
than 16. We then establish the impossibility of several small cardinalities through direct arguments. Finally,
we provide constructions that allow us to prove, by induction, that all cardinalities greater than 19 are
possible.

2 Preliminaries

A Boolean function f in n variables (an n-variable Boolean function) is a function from Fn
2 to F2. The set

of all Boolean functions in n variables is denoted by Bn.
The Walsh transform of f ∈ Bn is the function Wf : Fn

2 → Z defined by:

∀a ∈ Fn
2 , Wf (a) :=

∑
x∈Fn

2

(−1)f(x)⊕a·x.

The Walsh support of f is the set Wsuppf := {a ∈ Fn
2 |Wf (a) ̸= 0}, and the Walsh (absolute) spectrum

is the multiset AWspecf = {w×m(w) | ∃a ∈ Fn
2 , |Wf (a)| = w} where m(w) = |{a ∈ Fn

2 | |Wf (a)| = w}|.
We will mainly focus on the cardinality of the Walsh support. Therefore, we also define the set Bn,s of n

-variable Boolean functions having a Walsh support of cardinality s, i.e. Bn,s := {f ∈ Bn |
∣∣Wsuppf

∣∣ = s}.
Two Boolean functions f, g ∈ Bn are said extended affine equivalent if there exist an automorphism

L : Fn
2 → Fn

2 , two vectors a, b ∈ Fn
2 and c ∈ F2 such that g(x) = f(a + L(x)) ⊕ b · x ⊕ c. Two extended

affine equivalent Boolean functions f and g have the same structure of Walsh support (see [3]), that is, for
any decomposition of the Walsh support of f as a disjoint union of affine spaces, the Walsh support of g also
admits a decomposition into a disjoint union of the same number of affine spaces with the same respective
dimensions.

In this work, we frequently use a secondary construction of Boolean functions, known both as
Siegenthaler’s construction [12] and as the concatenation construction . For any functions f, g ∈ Bn, we
define the Siegenthaler ’s construction h = Sieg [f, g] ∈ Bn+1 of f and g as the function: h(x, y) =
(1⊕ y)f(x)⊕ yg(x) for (x, y) ∈ Fn

2 × F2. f and g are also called the sub-functions of h. One can deduce
the expression of Wh using Wf and Wg using the following relation:

∀(u, v) ∈ Fn
2 × F2, Wh(u, v) = Wf (u) + (−1)vWg(u). (1)

Since any function h ∈ Bn can be seen as a Siegenthaler’s construction by identifying one variable (as
Sieg [h(x, 0), h(x, 1)]), Relation 1 can be used to study the Walsh spectrum of h using the Walsh support s
of its subfunctions. In particular, we study for any functions f, g ∈ Bn the following sets:

K(f, g) := Wsuppf ∩Wsuppg and Ξ(f, g) := {a ∈ K(f, g) | |Wf (a)| = |Wg(a)|}.

We also denote by k and ξ the cardinalities of K(f, g) and Ξ(f, g), respectively, when there is no ambiguity
about f or g. Based on these sets, we can study in more details the cardinality of the Walsh support obtained
from Siegenthaler’s construction:

Lemma 1. Let f ∈ Bn,s, g ∈ Bn,t and h = Sieg [f, g]. Denote k = |K(f, g)| and ξ = |Ξ(f, g)|, then:

|Wsupph| = 2(s+ t)− 2k − ξ.

2



3 Structure of the Walsh Supports of Small Cardinality

In this section, we give results on the Walsh supports of small cardinalities . The few results already
established show that for small cardinalities the number of possible structures is limited. The first example
corresponds to the Walsh supports of cardinality 1, they are the singletons of Fn

2 , and correspond to the affine
functions. In [11], it has been established that a Walsh support has cardinality 4 or 8 if and only if it is an
affine subspace of Fn

2 , respectively of dimension 2 and 3.

Proposition 1 ( [11]). Let f ∈ Bn,s, then we have:

– s = 4 if and only if Wsuppf is an affine subspace of Fn
2 of dimension 2.

Moreover, AWspecf = {2n−1 × 4, 0× (2n − 4)},
– s = 8 if and only if Wsuppf is an affine subspace of Fn

2 of dimension 3.
Moreover, AWspecf = {3 · 2n−2 × 1, 2n−2 × 7, 0× (2n − 8)}.

We derive properties on the cardinality of the Walsh support based on Siegenthaler’s construction. It
allows us to study the structure of Walsh support further by characterizing the Walsh supports of cardinalities
10 and 13, and derive properties on the Walsh supports of cardinality 16. Finally, it enables us to discard
potential cardinalities lower than 20.

3.1 More from Siegenthaler’s Construction

The following result bounds the cardinality of the Walsh support of a function obtained from Siegenthaler’s
construction:

Lemma 2. Let h ∈ Bn+1,r such that h = Sieg [f, g] with f ∈ Bn,s and g ∈ Bn,t. Then, max{s, t} ≤ r ≤
2(s+ t).

Therefore, given s, t, one may observe, according to the properties of the Walsh supports of cardinalities
s and t, that k and ξ are constrained. For example, if s, t ≤ 8, then k must be 0 or a power of two since the
Walsh supports are affine spaces.

There are simple examples for the two extremes of Lemma 2. Taking twice the function f , we have
f ∈ Bn,s, g = f and h ∈ Bn+1,s. Taking f and g such that K(f, g) = ∅ is an example of the other extreme
case: f ∈ Bn,s, g ∈ Bn,t and h ∈ Bn+1,2s+2t.

Using that B1 = B1,1 and for n ≥ 2 any function can be written as the result of Siegenthaler’s
construction, Lemma 2 allows us to derive the impossibility of some cardinalities :

Lemma 3. Let r ≥ 2, if for all s ∈ [t, r − 1] there exists no n ∈ N such that a 4-tuple (s, t, k, ξ) with
r = 2(s+ t− k)− ξ satisfies Lemma 1, then for all n ∈ N, there exists no function f ∈ Bn,r.

3.2 The Walsh Support s of cardinalities 10, 13 and 16

The main method to characterize the structure of the Walsh supports of small cardinalities is to search for
the 4-tuples (s, t, k, ξ) as in Lemma 1 such that 2(s+ t)− 2k − ξ equals the desired cardinality and reason
using Titsworth’s relation (e.g. [2] Equation 2.51). We first give the characterization of the supports of
cardinalities 10 and 13.

Theorem 1. Let f ∈ Bn,s, then we have:

– s = 10 if and only if Wsuppf = V ∪D where V is an affine subspace of dimension 3 and D is an affine
subspace of dimension 1 such that D is parallel to one edge of V . Moreover, for u ∈ D, |Wf (u)| = 2n−1

and for u ∈ V , |Wf (u)| = 2n−2.
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– s = 13 if and only if Wsuppf = V1 ∪ V2 \ {b} where V1 and V2 are two affine subspaces of dimension
3 such that V1 ∩ V2 = {a, b}. Moreover, |Wf (a)| = 2n−1 and ∀u ∈

(
Wsuppf \ {a}

)
, |Wf (u)| = 2n−2.

Note that the description of the Walsh support for s = 13 is not given as a disjoint union of affine spaces
in order to preserve the geometric intuition; however, it can still be described as a disjoint union of affine
spaces of dimensions 0, 1 and 2.

We also give some properties on the Walsh supports of cardinality 16, they are essential to derive the
results for the impossible cardinalities stated in the next part.

Proposition 2. Let f ∈ Bn,16, then we have:

– AWspecf equals
{7 · 2n−3 × 1, 2n−3 × 15, 0× (2n − 16)} or {5 · 2n−3 × 1, 3 · 2n−3 × 3, 2n−3 × 12, 0× (2n − 16)}
or {2n−2 × 16, 0× (2n − 16)},

–
⊕

u∈Wsuppf
u = 0.

Fig. 1: Representation of each structure with cardinality s ∈ {4, 8, 10, 13} from left to right. The black nodes
are the points of the Walsh support belonging respectively to F2

2,F3
2,F4

2,F5
2.

3.3 Impossible Cardinalities for Walsh Supports

In Figure 2, we give the possible 4- tuples leading to a cardinality between 9 and 20. The results are obtained
by combining the different lemmas, theorems and propositions from the previous parts. They result in the
following theorem:

Theorem 2. Let n ∈ N, if r ∈ {9, 11, 12, 14, 15, 17, 19} then Bn,r = ∅.

4 Constructing the Walsh Supports of Large Cardinalities

4.1 Constructions to Reach Larger Supports

In this part, we present generic constructions such that given a function f having a Walsh support of
cardinality s, we obtain a function having a Walsh support of cardinality m·s+l. We introduce constructions
using the Walsh support s of cardinality 1.

Construction 1 (s → 2s). Let f ∈ Bn,s such that s > 1. Consider a ∈ Wsuppf and let g : x 7→ a · x.
Define h = Sieg [f, g]. We have then |Wsupph| = 2s.
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r (s1,t1,k1,ξ1) (s2,t2,k2,ξ2) (s3,t3,k3,ξ3)

9

10 (1, 4, 0, 0) (4, 4, 2, 2) (8, 8, 8, 6)

11

12

13 (4, 4, 1, 1) (8, 10, 8, 7) (10, 10, 9, 9)

14

r (s1,t1,k1,ξ1) (s2,t2,k2,ξ2) (s3,t3,k3,ξ3) (s4,t4,k4,ξ4)

15

16 (1, 8, 1, 0) (4, 4, 0, 0) (10, 10, 8, 8) (13, 13, 12, 12)

17

18 (1, 8, 0, 0) (4, 10, 4, 2) . . . . . .

19

20 (1, 10, 1, 0) . . . . . . . . .

Fig. 2: Table r is the cardinality constructed using Siegenthaler ’s construction . Each possible (s, t, k, ξ)
such that s ≤ t and s, t ̸= r are represented for each r. Dots in the array state that there are other 4- tuples
but we do not have an exhaustive list.

Construction 2 (s → 2s+ 2). Let f ∈ Bn,s such that s < 2n. Consider a /∈ Wsuppf and let g : x 7→ a · x.
Define h = Sieg [f, g]. We have then |Wsupph| = 2s+ 2 and 2n ∈ AWspech.

These constructions are of the form Sieg [f, g] with g being an affine function. We can use the structure
of the Walsh support s of cardinality 4 to consider constructions of the form Sieg [f, g] with g having a
Walsh support of cardinality 4. According to Lemma 1, if ξ = 1 we can construct Walsh support s of odd
cardinalities .

Construction 3. Let f ∈ Bn,s with 8 < s < 2n−1 and 2n−1 ∈ AWspecf . Consider a function g ∈ Bn,4

such that |K(f, g)| = 2 and |Ξ(f, g)| = 1. Define h = Sieg [f, g]. Then we have |Wsupph| = 2s+ 3.

Construction 4. Let f ∈ Bn,s with 8 < s < 2n−1 and 2n−1 ∈ AWspecf . Consider a function g ∈ Bn,4

such that |K(f, g)| = |Ξ(f, g)| = 1. Define h = Sieg [f, g]. Then we have |Wsupph| = 2s+ 5.

The constraint s < 2n−1 although not ideal ensures that both Constructions 3 and 4 always work. We
develop the idea to use the Walsh support of cardinality 4 to construct odd cardinalities but we apply it on a
function obtain through a 2s + 2 construction Construction 2 . Therefore, we can choose wisely the points
of value 2n−1 that we are going to intersect with the support of cardinality 4 such that k = 3 or k = 4. We
obtain the following proposition:

Proposition 3. Let f ∈ Bn,s such that 2n−1 ≤ s < 2n. Then,

– Then there exists g1 ∈ Bn+2 such that 2n+1 ∈ AWspecg1 and
∣∣Wsuppg1

∣∣ = 4s+ 3,
– If s ̸= 2n − 1, then there exists g2 ∈ Bn+2 such that 2n+1 ∈ AWspecg2 and

∣∣Wsuppg2
∣∣ = 4s+ 5.

4.2 Construction of All Possible Cardinalities Over 19

To show the existence of a Walsh support of any cardinality greater than 19 we use the following lemma:

Lemma 4. For n ≥ 6, we denote by Pn the following properties:

– [2n, 2n+1] ⊂ Cn+1,
– ∃f ∈ Bn+2,2n+1−1 such that 2n+1 ∈ AWspecf .

Then, if Pn is verified then Pn+2 is also verified.
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We verified P6 and P7 with computer search, therefore we can prove by induction that for any n ≥ 6 Pn

is verified. In particular, for any n ≥ 7 it implies that [2n−1 + 1, 2n] ⊂ Cn, which is sufficient to prove the
following theorem:

Theorem 3. Let n ≥ 7, then we have:

Cn = [1, 2n] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19}

Additionally we have the following for smaller values of n:

– C1 = {1}, C2 = {1, 4}, C3 = {1, 4, 8} and C4 = {1, 4, 8, 10, 16},
– C5 = [1, 25] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19, 27, 29, 30, 31},
– C6 = [1, 26] \ {2, 3, 5, 6, 7, 9, 11, 12, 14, 15, 17, 19, 63}.
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