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Abstract—In this paper, we study the majorization lattice
within the framework of Local Operations and Classical Com-
munication (LOCC) protocols for bipartite quantum systems. In
particular, we address two key problems: the approximation of
LOCC transformations and ϵ-robustness under uncertainty. The
first problem considers whether, given a desired transformation
from a state ρAB to σAB that is not theoretically possible,
one can identify a state σ1AB close to σAB such that ρAB

can be transformed into σ1AB via LOCC. The second problem
investigates whether a transformation from ρAB to σAB remains
possible when ρA is known with an uncertainty ϵ, with respect
to a given metric.

Using Nielsen’s theorem, these problems are formalized on
the majorization lattice, focusing on the majorization of Schmidt
coefficients (i.e., the eigenvalues of the reduced state ρA). We
derive a formula for the greatest radius of ϵ-robust majorization
between the Schmidt coefficient vectors λρ and λσ in the ℓ1

metric. Furthermore, we establish a formula for the greatest ϵ for
ϵ-robustness approximate majorization. Finally, we demonstrate
that an ϵ-robust majorization between Schmidt coefficients is
equivalent to an ϵ-robust LOCC transformation between the
states ρAB and σAB .

Keywords— majorization lattice, approximate majorization,
LOCC, robust majorization, trumping majorization
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I. OUTLINE

In section II, we recall important definitions and results such as
majorization and its lattice structure, “Local Operation and Classical
Communication” (LOCC) protocols and Nielsen’s theorem. In section
III, we recall results from [9] and [11] on approximate majorization.
In section IV, we study the robustness of majorization relation under
perturbation. We begin with some recall and proof of trivial lemmas.
We then find a formula for the greatest perturbation allowed (subsec-
tion IV-A) to maintain a majorization relation between two vectors.
Finally, we extend this result whenever we consider perturbation on
density matrices (subsection IV-B). In section V, we use the results of
the previous parts to study the robustness of approximate majorization
(subsection V-A), the robustness of a separability criterion based on
majorization (subsection V-B) and robust and approximate trumping
majorization (subsection V-C).

II. PRELIMINARIES

The theory of majorization has been quite popular in diverse
topics such as matrix theory, economics combinatorics [10][4] and
in entanglement theory [12][15]. It defines a general framework
to study the notion of “non-uniformity”. Intuitively, a vector x is
majorized by y, or x ď y, if x is “more uniform” than y.

Notation :
‚ ∆d denotes the set of d´ary probability distributions arranged

in non-increasing order, i.e. x P Rd
` such that x1 ě ... ě xd

and ∥x∥1 “ 1.
‚ Let x P ∆d, mpxq denotes the cardinal of supppxq, i.e. the

number of non-null components of x.
‚ u P ∆d denotes the uniform distribution, that is u “

`

1
d
, ..., 1

d

˘

.
‚ δ denotes the dirac distribution, that is δ “ p1, ..., 0q.
‚ ∥x∥p denotes the usual ℓp norm on Rd.
‚ If H is an Hilbert space, denote DpHq the set of density

operators ρ acting on H, i.e. the hermitian positive semi-definite
ρ such that Tr pρq “ 1 see Appendix VIII-A.

‚ If ρ is a density operator acting on a Hilbert space of dimension
d, denote λpρq P ∆d the eigenvalues of ρ in non-increasing
order.

‚ For any a P R, we denote paq
` the quantity maxta, 0u.

Numerous equivalent definitions of majorization have been found,
see [10]. Here, we have considered the definition which seem to be
the most appropriate in our context, namely the “Lorenz curves” or
“cumulative sum” definition.

Definition 1. Let x, y P ∆d, we say that x is majorized by y, denoted
as x ď y, if

@k P t1, ..., d´ 1u,
k
ÿ

i“1

xi ď

k
ÿ

i“1

yi. (1)

We denote Spyq the set of x P ∆d such that x ď y.

Remark 1. Whenever ď is defined on Rd, it requires to also verify
řd

i“1 xi “
řd

i“1 yi. Since we consider only vectors of ∆d, this
condition is trivially verified.

The relation of majorization ď defines a partial order on ∆d.
p∆d,ďq admits δ as greatest element and u as least element [10].
The majorization is not a total order, in figure 1, we give an example
of vectors x, y such that neither x ď y or y ď x are verified.

Remark 2. We define the Lorenz curve associated to x P ∆d as the
curve obtained by connecting the points

´

k
d
,
řk

i“1 xi
¯

0ďkďd
. Hence,

x ď y is equivalent to having the Lorenz curve of x under the Lorenz
curve of y. See figure 1.

Remark 3. It has been shown by Hardy, Littlewood and Polya (see
[10]) that x ď y if and only if there exists a doubly stochastic matrix
P such that x “ Py.

Fig. 1: Example of (non-)majorization between u (blue),
x “ p0.4, 0.4, 0.1, 0.1q (orange), y “ p0.5, 0.25, 0.25, 0q

(green) and δ (red). u ď x ď δ and u ď y ď δ. Moreover,
x ę y and y ę x.

An analogous order has been defined on density matrices con-
sidering the “doubly stochastic” characterization. Quite remarkably,
this definition can only be reduced to a classical majorization on
eigenvalues thanks to Uhlmann theorem (more details are given in
Appendix and in [1]).

Definition 2. Let ρ, σ be two density matrices acting on an Hilbert
space H, we say that ρ is majorized by σ, denoted as ρ ď σ if
λpρq ď λpσq.

Denote Spσq the set of density matrices acting on H such that
ρ ď σ.

A. LOCC Protocol and Nielsen’s Theorem
Among the classes of quantum communication protocols, the

“distant lab” framework is a well-studied subject [6]. In these
protocols, participants are only allowed to use a classical channel
to send classical bits and to manipulate independently their reduced
state. Using a prior shared entanglement between the involved
parties can allow them to indeed share quantum information. One of
the most famous illustration is the protocol of quantum teleportation
Bennett et al [3]. Here, we introduce the class of Local Operations
and Classical Communication for bipartite systems. Although
considering bipartite systems is restrictive, it has been shown that a
multipartite system can be simulated with bipartite systems as long
as we do not restrict the size of the composite systems [16].

Assume that Alice and Bob share a density operator ρAB . They do
not have an access to this state but only to their reduced operators ρA

or ρB . What kind of information can be shared between Alice and
Bob ? The precise resource shared is entanglement and is quantified
by Schmidt coefficients [14].

Definition 3 (Schmidt Coefficients). Let HA and HB be Hilbert
spaces, and |ψy P HA b HB a normalized vector. There exists
λ1, ..., λn, t|iAyui and t|iByui respectively sets of orthonormal
vectors of HA and HB such that

ρAB
“ |ψy xψ| “

ÿ

1ďi,jďn

a

λiλj |iAy xjA| b |iBy xjB | (2)

where n “ mintdimpHAq, dimpHBqu.
?
λ1, ...,

?
λn are called the

Schmidt coefficients and are unique up to re-ordering.



Notation 1. Given ρ a density matrix acting on a space HA b HB

such that ρAB
“ |ψy xψ| for some |ψy P HA bHB , λρ denote the λ

introduced in the Schmidt decomposition non-increasingly ordered.

One can remark [14] that the reduced operators ρA and ρB , i.e.
the state manipulated respectively by Alice and Bob, share the same
eigenvalues λρ.

Definition 4 (LOCC). The protocol of communication Local Oper-
ations and Classical Communication (LOCC) allows Alice and Bob
to apply any Local Operations (LO) on their reduced states, such
as measurements and unitary transformation, and to communicate
through a Classical Channel (CC).

Remark 4. In figure 2, we illustrate the LOCC setup. One can think
of LOCC as a way of communication in which Alice and Bob can
only “act” on their reduced states.

Alice Bob

ρA ρB

ρAB

CC
LO

λρ

LO

Fig. 2: Scheme of a bipartite LOCC protocol, ρAB is a pure
state and Alice and Bob can only manipulate their reduced
states. They are sharing the Schmidt coefficients λρ.

It is natural to ask whether we can transform deterministically a
shared state ρAB into another, say, σAB through a LOCC protocol. A
celebrated result of entanglement theory, namely Nielsen’s theorem
[12], shows that the evolution of a communication under LOCC
protocol is entirely characterized by relations of majorization.

Theorem 1. Alice and Bob can transform their shared pure state
ρAB into the pure state σAB using a LOCC protocol if and only if
λρ

ď λσ . This is generally written as

ρAB LOCC
ÝÑ σAB if and only if λρ

ď λσ. (3)

From Alice’s point of view, it is possible to transform her state
ρA into σA if and only if λ

`

ρA
˘

ď λ
`

σA
˘

, i.e. ρA ď σA.

A B A B

ρA ρB σA σB

ρAB

LOCC

σAB

λρ

λρ
ďλσ

λσ

Fig. 3: Illustration of Nielsen Theorem for bipartite LOCC
conversion. ρAB LOCC

ÝÑ σAB if and only if λρ ď λσ . This
allows Alice and Bob to go from the system on the left to the
system on the right.

B. Majorization Lattice
A lattice is a quadruplet pL,ď,_,^q such that L is a set partially

ordered with respect to ď and for every two elements x, y P L, there
exists a greatest lower bound x^y with respect to ď and a least upper
bound x_y with respect to ď. It is well-known that the majorization
order induces a lattice stucture on ∆d (see [2]).

Theorem 2 (Majorization lattice). ∆d ordered by the majorization
relation ď can be endowed with a lattice structure.

Moreover, the lattice p∆d,ď,^,_q is a complete lattice [2], that
is for any non-empty subset S of ∆d there exists an infinimum and
a supremum of S in the sense of majorization.

Proposition 1. Let S Ă ∆d non-empty. There exists two unique
vectors

Ź

S and
Ž

S such that
‚ 1) @x P S,

Ź

S ď x
2) If x is such that for any y P S, we have x ď y, then

x ď
Ź

S.
‚ 1) @x P S, x ď

Ž

S
2) If x is such that for any y P S, we have y ď x, then

Ž

S ď x.

Proof: The proof of the completeness of the majorization lattice
is given in [2]. More details on the construction of such vectors are
given in [5].

Remark 5. Note that
Ź

S or
Ž

S may not be in S. A trivial example
is given whenever x ę y, then

Ź

tx, yu “ x^y and x^y is different
than x or y. The same argument holds for

Ž

tx, yu.

C. Steepest and Flattest Approximation
Horodecki et al. have introduced the notions of steepest and flattest

approximations in [9], these are defined to be the supremum and
infinimum (in the sense of majorization) of the vectors in ∆d within
a distance of a given vector x P ∆d. These are useful whenever one
wants to study majorization with approximations [11].
Notation :

‚ An exponent pDq indicates that the object is defined with respect
to a given metric D. For ℓp metrics, we write ppq. Whenever
there is no ambiguity on the D, we may omit the exponent.

‚ BpDq
ϵ pxq denote the ball of radius ϵ and of center x for D

intersected with ∆d, i.e.

BpDq
ϵ pxq “ tx1

P ∆d, Dpx, x1
q ď ϵu. (4)

Definition 5. Let x P ∆d, D a metric on Rd
ˆ Rd and ϵ ě 0,

we define the following vectors respectively the steepest and flattest
ϵ´approximations [9][11].

xpDq

ϵ “
ľ

BpDq
ϵ pxq (5)

xpDq
ϵ “

ł

BpDq
ϵ pxq. (6)

Remark 6. The term “flattest” and “steepest” are references to the
constructions of xp1q

ϵ and xp1q
ϵ , see Appendix VIII-B and [9].

Remark 7. We can compute xp8q
ϵ and xp8q

ϵ using the algorithms
presented in [11]. In Appendix VIII-B, we recall the form and the
computation for ℓ1 metric given in [9].

Steepest and flattest approximations have already been studied for
ℓp´distances [11] [9]. In particular, it has been shown in [11] that
xppq
ϵ and xppq

ϵ are in Bppq
ϵ pxq if and only if p “ 1 or p “ 8. In [11], it

has been shown that ϵ ÞÑ x
p8q
ϵ is additive, i.e.

´

x
p8q
ϵ1

¯p8q

ϵ2

“ x
p8q

ϵ1`ϵ2
.

We show that this is also verified for the ℓ1´approximation.



Fig. 4: Lorenz curves of x “ p0.4, 0.4, 0.1, 0.1q, xp1q
ϵ and x

p1q
ϵ

for ϵ “ 0.3. We have x
p1q
ϵ “ p0.55, 0.4, 0.05, 0q and x

p1q
ϵ “

p0.325, 0.325, 0.175, 0.175q.

Proposition 2. Let x P ∆d and ϵ1, ϵ2 ą 0, then

´

x
p1q
ϵ1

¯p1q

ϵ2

“ x
p1q

ϵ1`ϵ2
. (7)

Proof: See Appendix VIII-C for a proof.
Similarly, we can show that ϵ ÞÑ xϵ is also additive for ℓ1 distance.

Proposition 3. Let x P ∆d and ϵ1, ϵ2 ą 0, then

´

xp1q

ϵ1

¯p1q

ϵ2

“ x
p1q

ϵ1`ϵ2
. (8)

Proof: See Appendix VIII-C for a proof.

III. APPROXIMATE MAJORIZATION

A classical problem in the study of pure bipartite LOCC protocol
arises when Alice and Bob want to perform a transformation they
are not allowed to accordingly to Nielsen’s theorem, i.e. λρ

ę λσ .
Alice and Bob can either choose to perform the LOCC protocol but
may fail, this has been studied in Vidal’s article, but they may also
consider to go to a state σ1 close to σ whose Schmidt coefficients
verify λρ

ď λσ1

, it has also been studied in [15]. We introduce the
notion of ϵ´majorization (namely pD, ϵq´pre-majorization in [11]).

Definition 6. Let x, y in ∆d and ϵ ą 0.Given a metric D, we say
that x is ϵ´majorized by y if there exists y1

P ∆d such that x ď y1

and Dpy, y1
q ď ϵ and we write x ďϵ y.

This relation might be hard to study in general. However it is
simply reduced to classical majorization relation (Proposition 4) when
we study the ℓ1 metric [11].

Proposition 4. Let x, y in ∆d and ϵ ą 0, then x ď
ϵ
y if and only if

x ď yp1q
ϵ .

Remark 8. This result hold for any distance D such that ypDq
ϵ . It

has been shown that among the ℓp distance with p ě 1, only the ℓ1

and ℓ8 distances verify this property.

Horodecki et al [9] have determined an explicit formula for the
minimal ϵ to perform an approximate majorization with ℓ1 metric
(see figure 5).

Proposition 5. Let x, y P ∆d and ϵminpx, yq the minimal ϵ such that
x ď yϵ, then

ϵminpx, yq “ 2 max
1ďkďd

$

&

%

˜

k
ÿ

i“1

xi ´ yi

¸`
,

.

-

(9)

Moreover, ϵminpx, yq is also the minimal ϵ such that xϵ ď y.

Remark 9. Horedecki’s result is slightly different since it assumes
that x ę y. However, trivially, if x ď y holds, then the minimal

ϵminpx, yq “ 0. Moreover max1ďkďd

"

´

řk
i“1 xi ´ yi

¯`
*

“ 0

since x ď y.

It has been shown in [11] that an approximate majorization
between two density operators is equivalent to an approximate
majorization between their eigenvalues for the ℓ1 metric.

Proposition 6. Let ρ, σ be two density operators acting on a space
H and ϵ ě 0. Then, the following are equivalent

1) There exists σ1 such that ∥λpσ ´ σ1
q∥1 ď ϵ and ρ ď σ1.

2) λpρq ďϵ λpσq.

Hence, if we define Eminpρ, σq the minimal ϵ ě 0 such that 1. is
verified in Proposition 6, i.e. the minimal ϵ to perform an approximate
majorization between ρ and σ, we have

ϵmin pλpρ, σqq “ Eminpρ, σq. (10)

Fig. 5: Lorenz curves of x “ p0.4, 0.4, 0.1, 0.1q (in green),
y “ p0.5, 0.25, 0.25, 0q (in orange) and yϵminpx,yq

(in dashed
red). Here, minpx, yq “ 0.1 and x ę y but x ď yϵminpx,yq

.
Intuitively, if we consider ϵ ă minpx, yq, then the dashed
curve would slightly below and would violate the majorization
condition.

IV. MAJORIZATION WITH CORRUPTION

Assume Alice and Bob are in pure bipartite LOCC setup and
share a pure state ρ of squared Schmidt’s coefficients λρ and want
to perform an LOCC transformation to σ with squared Schmidt’s
coefficients λσ . Nielsen’s Theorem [12] tells us it is possible if and
only if λρ

ď λσ . However, assume then that Alice and Bob are not
exactly in the state ρ but rather in ρ1 such that for a given metric
D on Rd

ˆ Rd we have Dpλρ, λρ1

q ď ϵ. Is there a greatest radius
ϵmaxpx, yq such that for any λρ1

such that Dpλρ, λρ1

q ď ϵmaxpx, yq,
we have ρ1 LOCC

ÝÑ σ. In other words, we are looking the greatest ball
BpDq

ϵ pλρ
q included in Spλσ

q.



x

ϵ

Spyq
xpDq
ϵ ď y

ðñ

Fig. 6: Illustration of the Proposition 7
.

We consider in the following propositions D to be a metric on
Rd

ˆ Rd. The following trivial proposition gives a relatively simple
necessary condition for BpDq

ϵ pxq Ă Spyq.

Proposition 7. Let x, y P ∆d and ϵ ą 0, then BpDq
ϵ pxq Ă Spyq if

and only if xpDq
ϵ ď y.

Proof: By definition, xpDq
ϵ is the supremum of BpDq

ϵ pxq. If
BpDq

ϵ pxq Ă Spyq, then y is greater (in the sense of ď) than any
element of the ball, hence xpDq

ϵ ď y since xpDq
ϵ is least upper bound.

Conversely, assume that xpDq
ϵ ď y, then for any x1 in the ball, we

have x ď x
pDq
ϵ ď y, i.e. BpDq

ϵ pxq Ă Spyq.
As a corollary of Proposition 7, it is possible to characterize the

interior points of Spyq.

Lemma 1. Let x, y P ∆d.x is an interior point of Spyq if and only
if

@k P t1, ...,mpyq ´ 1u,
k
ÿ

i“1

xi ă

k
ÿ

i“1

yi. (11)

Proof: See Appendix VIII-C.

A. Greatest Radius for the ℓ1´distance
In this part, we consider D to be the ℓ1 metric. For the sake of

brevity, in the proofs xϵ will be denoted as µϵ. We want to establish
the greatest ϵ such that xϵ ď y (figure 7).

Lemma 2. Let x, y P ∆d such that x is an interior point of Spyq. Let
m ď d and ϵm “ min1ďkăm

!

řk
i“1 yi ´ xi

)

, then m pxϵmq ě m.

Proof: Let ϵm “ 2min
!

řk
i“1 yi ´ xi

)

. ϵ ď 2py1 ´ x1q, then
x1 ` ϵ

2
ď y1 ď 1. We assume y to be different than δ. Hence

x1 ` ϵ
2

ă 1 and there exists l given by the construction of the
steepest approximation µϵ of x. Moreover, we have

1 ă

l
ÿ

i“1

xi `
ϵ

2
. (12)

Assume l ă m, then

1 ă

l
ÿ

i“1

xi `
ϵ

2
ď

l
ÿ

i“1

xi `

l
ÿ

i“1

yi ´ xi “

l
ÿ

i“1

yi. (13)

Hence, by contradiction, l ě m.

Remark 10. If µϵ
ď y, then µϵ must have at least mpyq non-

zeros component. Therefore, Lemma 2 says that ϵmpyq is a potential
candidate for a ϵ such that x ď µϵ

ď y.

Fig. 7: Lorenz curves of x “ p0.3, 0.3, 0.2, 0.2q (orange),
y “ p0.5, 0.4, 0.1, 0q (green) and xϵmaxpx,yq

(dashed red). Here,
ϵmaxpx,yq “ 0.4 and xϵmaxpx,yq

“ p0.5, 0.3, 0.2, 0q. Intuitively,
if ϵ ą maxpx, yq then the dashed curve would be above and
would violate the majorization condition.

Theorem 3. Let x, y P ∆d such that x is an interior point of Spyq,
then for the ℓ1 distance, we have

ϵmaxpx, yq “ 2 min
1ďkămpyq

#

k
ÿ

i“1

yi ´ xi

+

. (14)

Proof: Let µϵ such that µϵ
ď y. We know that µϵ has at least

more non-null components than y, hence for 1 ď k ă mpyq, we have

k
ÿ

i“1

µϵ
i “

k
ÿ

i“1

xi `
ϵ

2
ď

k
ÿ

i“1

yi. (15)

Hence, ϵmaxpx, yq ď ϵmpyq.
Consider ϵ “ ϵmpyq, we know that µϵ has at least mpyq non-null
components. Then, for k ă mpyq, we have

k
ÿ

i“1

µϵ
i “

k
ÿ

i“1

xi `
ϵ

2
ď

k
ÿ

i“1

xi `

k
ÿ

i“1

yi ´ xi “

k
ÿ

i“1

yi. (16)

And for k ě mpyq,
řk

i“1 µ
ϵ
i ď

řk
i“1 yi “ 1. Hence µϵ

ď y and
ϵm ď ϵmaxpx, yq.

Remark 11. The proposition holds when x is not an interior point of
Spyq. If x is not an interior point, trivially ϵmaxpx, yq “ 0. Moreover,
there exists k ă mpyq such that

řk
i“1 xi “

řk
i“1 yi, hence the

minimum will be equal to 0.

B. Robustness on Matrix Majorization
Whenever we are working with density matrices, a well-known

metric is the so-called “Trace distance”, we recall its definition

∥ρ´ σ∥1 “ ∥λpρ´ σq∥1. (17)

This metric can be considered analogous to the total variation
distance (up to a multiplicative constant) as a measure of how much
one can discriminate a state upon another [14].

Notation :
‚ Let ρ be a density matric acting on a space H an denote Bϵpρq

the set of density matrices ρ1 acting on H such that ∥ρ´ρ1∥1 ď

ϵ, i.e.
Bϵpρq “

␣

ρ1
P DpHq, ∥ρ´ ρ1∥1 ď ϵ

(

. (18)



Alice and Bob are now concerned about the distance between their
density matrices. Hence, Alice knows that her state ρ1A is in Bϵ

`

ρA
˘

and wants to be sure that it verifies ρ1A
ď σA.

Definition 7. Let ρ, σ acting on an Hilbert space H and ϵ ě 0. We
say that ρ is ϵ´robust majorized by y when B1

ϵ pρq Ă Spσq.

Definition 8. Let ρ, σ acting on an Hilbert space H. Define
Emaxpρ, σq the greatest ϵ ě 0 such that B1

ϵ pρq Ă Spσq.

We show in Theorem 4 that the greatest ϵ such that ϵ´robust
majorization is verified between two density matrices ρ and σ is
equal to ϵmaxpλpρq, λpσqq, i.e. the greatest ϵ such that ϵ´robust
majorization is verified between the eigenvalues.

Theorem 4. Let ρ, σ acting on an Hilbert space H. Then, we have

ϵmaxpλpρq, λpσqq “ Emaxpρ, σq. (19)

Proof: Let ϵ “ ϵmaxpλpρq, λpσqq and E “ Emaxpρ, σq.
Consider µ such that ∥λpρq ´ µ∥1 ď E . Let Λ and M the diagonal
matrices naturally defined by λpρq and µ. There exists a unitary such
that UΛU:

“ ρ. Hence

∥ρ´ UMU:∥1 “ ∥Λ ´M∥1 “ ∥λpρq ´ µ∥1 ď E . (20)

By definition of E , we have UMU:
ď σ, hence λpMq ď λpσq, i.e.

µ ď λpσq. Therefore, E ď ϵ.

Consider ρ1 such that ∥ρ ´ ρ1∥1 ď ϵ. We can apply Lidskii’s
theorem to obtain (21)

∥λpρq ´ λpρ1
q∥1 ď ∥ρ´ ρ1∥1 ď ϵ. (21)

Hence, by definition of ϵ, λpρ1
q ď λpσq. Therefore, ρ1

ď σ. Thus,
ϵ ď E .

As a trivial corollary, we can show that an ϵ´robust majorization
between density matrices is verified if and only if an ϵ´robust
majorization is verified between their eigenvalues.

Corollary 1. Let ρ, σ acting on an Hilbert space H, then ρ is
ϵ´robust majorized by σ if and only if λpρq is ϵ´robust majorized
by λpσq

Proof: λpρq is ϵ´robust majorized by λpσq if and only if ϵ ď

ϵmaxpλpρq, λpσqq. Using Proposition 4, we have that ϵ ď Epρ, σq “

ϵmaxpλpρq, λpσqq. Hence, λpρq is ϵ´robust majorized by λpσq if
and only if ϵ ď Epρ, σq, which is equivalent to ρ being ϵ´robust
majorized by σ.

To enlighten how this result might be considered for LOCC
protocol, we restate Nielsen’s theorem from the point of view of
Alice (or Bob). ρ LOCC

ÝÑ σ if and only if ρA ď σA (equivalently
ρB ď σB . From Proposition 4, we have

ϵmaxpλρ, λσ
q “ EmaxpρA, σA

q. (22)

V. APPLICATIONS

In this section, we will consider only the ℓ1 metric and its matrix
analogous metric the trace distance.

A. Robustness on Approximate Majorization
Consider that Alice and Bob are no more interested into having

exactly σ and accept that there exists ϵρ, ϵσ such that Dpλρ, λ
1
ρq ď ϵρ

and Dpλσ, λ
1
σq ď ϵσ . Precisely, they want, knowing that ρ might be

corrupted, to go to a state “not-so-far” from the state σ. Proposition
8 states that this can be characterized using a majorization relation,
which can be considered as an application of approximate majoriza-
tion and robust majorization.

Proposition 8. Let x, y P ∆d, ϵx ě 0 and ϵy ě 0. There exists
y1

P Bϵy pyq such that Bϵxpxq Ă Spy1
q if and only if xϵx ď yϵy .

Proof: Assume xϵx ď yϵy . Then, we take y1
“ yϵy and by the

result of the previous part Bϵxpxq Ă Spy1
q.

Conversely, assume there exists y1 as defined above then Bϵxpxq Ă

Spy1
q Ă Spyϵy q by the definition of yϵy . Therefore, xϵx ď yϵy .

Remark 12. Note that Proposition 8 is equivalent to : for any x1
P

Bϵpxq, there exists y1
P Bϵpyq such that x1

ď y1.

A robust transformation protocol would require to have the greatest
ϵx and the lowest ϵy . The case where ϵ “ ϵx “ ϵy and x ď y has
already been studied in [9].

Proposition 9. Let x, y P ∆d such that x ď y. Then for any ϵ ě 0,
we have

xϵ ď yϵ. (23)

Remark 13. This cannot provide directly “optimal” ϵx or ϵy .
However, if we allow ϵ to be small, say that Alice and Bob are almost
certain that thay have produced vector x, then they can perform a
majorization relation to some vector close to y.

As a trivial corollary of Theorem 3, we find a formula for
the greatest radius for an ϵ´approximation of majorization, i.e.
ϵmax px, yϵq

Corollary 2. Let x, y P ∆d and ϵ ě 0 such that x ď yϵ, then

ϵmax px, yϵq “ 2 min
1ďkămpyϵq

#

k
ÿ

i“1

yi ´ xi

+

` ϵ. (24)

Proof: Denote m “ m pyϵq.

ϵmaxpx, yϵq “ 2 min
1ďkăm

#

k
ÿ

i“1

pyϵqi ´ xi

+

(25)

“ 2 min
1ďkăm

#

k
ÿ

i“1

yi ´ xi `
ϵ

2

+

(26)

“ 2 min
1ďkăm

#

k
ÿ

i“1

yi ´ xi

+

` ϵ. (27)

(26) comes from the construction of yϵ, for any k ă m
řk

i“1 pyϵqi “
řk

i“1 yi ` ϵ
2

.

Remark 14. If x ď y, then 2min1ďkămpyϵq

!

řk
i“1 yi ´ xi

)

ě 0.
For any ϵ, we have ϵ ď ϵmax px, yϵq. Therefore, we can prove as a
corollary the Proposition 9.

Remark 15. This result can also be used to find ϵminpx, yq. Let x, y
such that x ę y, then by definition of ϵminpx, yq, x ď yϵmaxpx,yq.
Moreover, it would saturate one of the inequality of the majorization,
i.e. x would be a boundary point of S

`

yϵmaxpx,yq

˘

. As a consequence,
ϵmax

`

yϵminpx,yq

˘

“ 0. Denote m “ m
`

yϵminpx,yq

˘

Hence, using the
formula

2 min
1ďkăm

#

k
ÿ

i“1

yi ´ xi

+

` ϵmin px, yq “ 0. (28)

Hence,

ϵmin px, yq “ 2 max
1ďkăm

#

k
ÿ

i“1

xi ´ yi

+

. (29)

B. Robustness of a Separability Criterion
We recall definitions from Appendix VIII-A. If ρ is a density

operator acting on a tensor space H1 bH2, it is said to be a product
state whenever there exists ρ1, ρ2 such that ρ “ ρ1bρ2. ρ is separable
if it is a convex combination of product states. If ρ is not separable,
it is said to be entangled.



ρ “ ρ1 b ρ2

ρ “
ř

i piρ
i
1 b ρi

2

ρ P DpH1 b H2q

Fig. 8: Inclusions between the sets of all states, separable states
and product states. Entangled states are in the clearest part of
the drawing.

A well-known problem in entanglement theory is to know whether
there is actually some entanglement, or the state shared is separable.
This problem is considered to be NP-hard in general and has been
proven NP-hard for specific cases [8]. In the bipartite case, one can
use a separability criterion based on majorization. We will then use
Proposition 5 from [9] and Theorem 3 to study the robustness of this
criterion.

Proposition 10. If ρAB is separable, then ρAB
ď ρA and ρAB

ď

ρB .

Proof: A proof can be found in [13].

Remark 16. Notice that ρAB and ρA are not acting on the same
Hilbert space. Hence, we have a problem of homogeneity for the
eigenvalues. Usually, to consider majorization between vectors of
different size, we add 01s to the shortest vector.

Remark 17. Equivalently, if either ρAB
ę ρA or ρAB

ę ρB , then
ρAB is entangled.

This criterion may fail for two different reasons. Either entangle-
ment is theoretically detected but practically not detected, or there is
no entanglement theoretically but entanglement is detected.

Definition 9. We say that the criterion is ϵ´corrupted for Alice
whenever we have :

‚ False Entanglement Detection : ρAB
ď ρA and there exists

ρ1AB
P Bϵ

`

ρAB
˘

such that ρ1AB
ę ρA

‚ No Entanglement Detection : ρAB
ę ρA and there exists

ρ1AB
P Bϵ

`

ρAB
˘

such that ρ1AB
ď ρA.

We say that the criterion is ϵ´corrupted whenever it is ϵ´corrupted
for Alice or for Bob.

Proposition 11. Assume that ρAB
ę ρA. The separability criterion

is not ϵ´corrupted for Alice if and only if ϵ ă Emin

`

ρAB , ρA
˘

.

Proof: The criterion is ϵ´corrupted if and only if λ
`

ρAB
˘ϵ

ď

λ
`

ρA
˘

. By definition, this is equivalent to ϵ ě Emin

`

ρAB , ρA
˘

.

Proposition 12. Assume that ρAB
ď ρA. The separability criterion

is not ϵ´corrupted if and only if ϵ ď Emax

`

ρAB , ρA
˘

.

Proof: The criterion is not ϵ´corrupted for Alice if and only
Bϵ

`

ρAB
˘

Ă S
`

ρA
˘

. By definition, this is equivalent to ϵ ď

Emax

`

ρAB , ρA
˘

C. Robust and Approximate Trumping Majorization
Trumping majorization, or catalytic majorization, have been

mainly introduced in the study of LOCC. It has been noticed that

some states were inconvertible, i.e. λρ
ę λσ , but whenever we con-

sider a well-chosen catalysis, say c P ∆m, we have λρ
b c ď λσ

b c
(figure 9). Here, z b c denotes the tensor product of z and c, that is

z b c “
`

zpiqcpjq

˘

i,j
(30)

where pzpiqqi and pcpjqqj are permutations of z and c such that zb c
is arranged in non-increasing order.

(a)

(b)

Fig. 9: We consider x “ p0.4, 0.4, 0.1, 0.1q (orange) and y “

p0.5, 0.25, 0.25, 0q (green), we recall in (a) that x ę y with
their Lorenz curves. In (b), we have plotted the Lorenz curves
of x b c and of y b c with c “ p0.6, 0.4q, we can see that
x b c ď y b c.

Definition 10. Let x, y P ∆d, x is said to be trumped by y, denoted
as x ďT y if there exists m P N and c P ∆m such that xbc ď ybc.

We denote T pyq the set of vectors trumped by y.

ďT is known to be a partial order on ∆d. More details on this can
be found in [7]. Whenever d ě 4, there exists vectors x, y P ∆d such
that x ę y and x ďT y. See figure 9b, we can show that xbc ď ybc
for c “ p0.6, 0.4q and x ę y.

Remarkably, both robustness and approximation of trumping ma-
jorization can be characterized using steepest and flattest approxima-
tions.

Proposition 13. Let x, y P ∆d and ϵ ě 0, Bϵpxq Ă T pyq if and
only if xϵ ďT y.



Proof: If Bϵpxq Ă T pyq, then xϵ ďT y because xϵ P Bϵpxq.
Conversely, assume that xϵ ďT y. Then, for any x1

P Bϵpxq

x1
ď xϵ ďT y. (31)

Since x1
ď xϵ implies x1

ďT xϵ, we have x1
ďT y.

Proposition 14. Let x, y P ∆d and ϵ ě 0, the following are
equivalent

1) There exists y1
P Bϵpyq such that x ďT y1

2) x ďT yϵ.

Proof: Assume that there exists y1
P Bϵpyq such that x ďT y1.

x ďT y1
ď yϵ. (32)

Hence, x ďT yϵ.
Conversely, assume that x ďT yϵ. Since yϵ P Bϵpyq, we can

choose y1
“ yϵ.

M.Klimesh and S.Daftuar have already given in [7] a sufficient
condition for a point to be in the interior of T pyq. Using the previous
proposition, we give a necessary condition whenever mpyq “ d, i.e.
y has only non-null coordinates.

Proposition 15. Let x, y P ∆d such that mpyq “ d, x is an interior
point of T pyq if and only if x ďT y and x1 ă y1 and xd ą yd.

Proof: The sufficiency has already been proven in [7]. Let x
be an interior point. Let ϵ ą 0 small enough such that m pxϵq “ d
and Bϵpxq Ă T pyq. Hence, we have trumping majorization with a
catalyst, say c P ∆m,

xϵ b c ď y b c. (33)

We have pxϵ b cq1 “
`

x1 ` ϵ
2

˘

c1, and py b cq1 “ y1c1. Therefore
´

x1 `
ϵ

2

¯

c1 ď y1c1 (34)

Hence x1 ` ϵ
2

ď y1, therefore x1 ă y1.
Similarly, pxϵ b cqmd “

`

xd ´ ϵ
2

˘

cm and py b cqmd “ ydcm.
Hence, by majorization

´

xd ´
ϵ

2

¯

cm ě ydcm. (35)

Thus, xd ą yd.

Proposition 16. Let x, y P ∆d with mpyq “ d, denote ϵmaxpx, yq
T

the greatest ϵ such that xϵ ďT y, then

ϵmaxpx, yq ď ϵmaxpx, yq
T

ď 2minty1 ´ x1, xd ´ ydu. (36)

Proof: Denote ϵn “ ϵmaxpx, yq
T

´ 2´n. For n large enough,
xϵn is an interior point. There exists α ą 0 such that ϵn ` α ă

ϵmaxpx, yq
T .

xϵn
α

“ xϵn`α
ď xϵmaxpx,yqT

ďT y. (37)

Hence, for n large enough,

pxϵnq1 ă y1 (38)
pxϵnqd ą yd (39)

We assumed that mpyq “ d, then by construction of pxϵnq, we have

x1 `
ϵn
2

ă y1 (40)

xd ´
ϵn
2

ă yd. (41)

Hence, as n goes to infinity, we have ϵmaxpx, yq
T

ď 2minty1 ´

x1, xd ´ ydu.

The left inequality is trivial whenever x is not an interior point of
Spyq, ϵmaxpx, yq “ 0 in this case. If x is an interior point of Spyq,
then xϵmaxpx,yq ď y. Hence xϵmaxpx,yq ďT y and by definition

ϵmaxpx,yq ď ϵTmaxpx,yq. (42)

Corollary 3. Let x, y P ∆d such that x ę y and x ďT y, then for
ϵ ě ϵminpx, yq

ϵ` 2 min
1ďkămpyϵq

#

k
ÿ

i“1

yk ´ xk

+

ď ϵmax px, yϵq
T (43)

Proof: Denote ϵ “ ϵminpx, yq. By definition, x ď yϵ. Hence,
we can use the previous Proposition :

ϵmax px, yϵq ď ϵmax px, yϵq
T . (44)

ϵmax px, yϵq can be explicitly computed using Corollary 2

ϵmax px, yϵq “ ϵ` 2 min
1ďkămpyϵq

#

k
ÿ

i“1

yi ´ xi

+

. (45)

Remark 18. We recall that ϵmax px, yϵq
T denote the supremum of

all ϵ1 such that xϵ1 ďT yϵ. Hence, this Corollary gives a lower bound
on the robustness of an approximate trumping majorization whenever
ϵ “ ϵminpx, yq.

Assume that Alice and Bob know that λρ
ďT λσ with λρ

b c ď

λσ
b c and want to be sure that they will still verify the trumping

relation with c P ∆m. Formally, given x, y P ∆d and c P ∆m

verifying xb c ď y b c we want ϵ such

@x1
P Bϵpxq, x1

b c ď y b c. (46)

And denote T py, cq the set of vectors x in ∆d such that xbc ď ybc.

Proposition 17. Let x, y P ∆d, Bϵpxq Ă T py, cq if and only if
xϵ b c ď y b c.

We show that a sufficient condition to have Bϵpxq Ă T py, cq is to
have Bϵpx b cq Ă Spy b cq which is far easier to study. First, we
establish a bound on the minimal ϵ such that x b c ď y b cϵ given
their distance.

Lemma 3. Let x, y P ∆d such that ∥x´ y∥1 ď ϵ and c P ∆m then

ϵminpxb c, y b cq ď ϵ (47)

Proof: Consider k ă md such that

k
ÿ

i“1

pxb cqi ´ py b cqi ě 0. (48)

We can write the following sum in the following way

k
ÿ

i“1

xi “

d
ÿ

i“1

xi

ri
ÿ

j“1

cj . (49)

In other words, we consider the k greatest components of py b cq and
order them by xi and ri is the number of xicj in these k greatest
components. We have

k
ÿ

i“1

py b cqi ě

d
ÿ

i“1

yi

ri
ÿ

j“1

cj (50)



because, by definition, the sum on the left is the sum of the k greatest
components of py b cq. Hence∣∣∣∣∣ k

ÿ

i“1

pxb cqi ´ py b cqi

∣∣∣∣∣ ď

∣∣∣∣∣ d
ÿ

i“1

pxi ´ yiq

ri
ÿ

j“1

cj

∣∣∣∣∣ (51)

ď

d
ÿ

i“1

|xi ´ yi|
ri
ÿ

j“1

cj (52)

ď

d
ÿ

i“1

|xi ´ yi| (53)

“ ∥x´ y∥1 (54)
ď ϵ. (55)

Therefore, for any k P t1, ...,mdu, we have

k
ÿ

i“1

pxb cqi ´ py b cqi ď ϵ. (56)

Thus, ϵmin py b c, xb cq ď ϵ.

Proposition 18. Let x P ∆d, c P ∆m and ϵ ě 0, then

xϵ b c ď xb cϵ (57)
xb c

ϵ
ď xϵ b c. (58)

Proof: ∥x´ xϵ∥1 ď ϵ, hence ϵmin pxϵ b c, xb cq ď ϵ. Then

xϵ b c ď xb cϵ. (59)

Similarly using Proposition 5, ∥x ´ xϵ∥1 ď ϵ then
ϵmin pxb c, xϵ b cq ď ϵ. Then

xb c
ϵ

ď xϵ b c. (60)

Remark 19. Hence, if xb cϵ ď y b c, i.e. Bϵpx b cq Ă Spy b cq,
then

xϵ b c ď xb cϵ ď y b c. (61)

Thus, Bϵpxq Ă T py, cq.

Similarly, we can introduce ϵmaxpx, y, cqT the greatest ϵ such that
for any x1

P Bϵpxq we have x1
b c ď y b c. As a corollary, we can

establish a lower bound on this quantity.

Corollary 4. Let x, y P ∆d, c P ∆m and ϵ ě 0, then

ϵmax pxb c, y b cq ď ϵmaxpx, y, cqT . (62)

Results on figure 10 may be pondered by some observations on
inequality (62). It seems that for catalysis c close to uniform distri-
bution, the bound is tight. However, it may be degraded whenever
the catalysis gets far from the uniform.

VI. CONCLUSION

We have considered the problem of robustness of majorization
upon perturbation of vectors through the framework of the majoriza-
tion lattice. We have derived for ℓ1 metric a greatest radius for the
corrupted vectors to be within in order to maintain a majorization
relation. This has been used to study the robustness of a LOCC
protocol in theory, but may be applied in different contexts. For
example, in V-B, we have established a necessary and sufficient
condition for a separability criterion to be robust. These results
can be used to derive bounds on approximate and robust trumping
majorization which is considered to be a complex order to study.

In [11], many results on lattice-based approximation with ℓ8

metric have been studied. It would be interesting to study the
robustness for this metric that can be considered more “restrictive”
than the ℓ1 metric.

(a) Here c “ p0.6, 0.4q.

(b) Here c “ p0.7, 0.3q

Fig. 10: For a given c, we plot for couples x, y P ∆d such
that x b c ď y b c the comparison between an estimation of
ϵmaxpx, y, cqT and ϵmaxpx b c, y b cq.
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VIII. APPENDIX

A. Quantum Formalism
While classical information theory relies on random variables and

probability distributions, it is well-known that quantum theory cannot
be described entirely by this formalism. Thus, accordingly to the first
postulate of quantum mechanics quantum states are described by unit
vectors of an Hilbert space. In quantum information theory however,
states are mainly described by statistical mixing of these quantum
mechanics states. That is, considering |ψ1y , ..., |ψny, the coupling
p|ψ1y , p1q, ..., p|ψny , pnq where p is a probability distribution. These
can be entirely described by density operators.

Definition 11 (Density Operators). Let H “ Cd be an Hilbert
space. A density operator ρ on H is a positive semi-definite matrix
that verifies Tr pρq “ 1.

Denote DpHq the set of density operators on H.

We can explicitely define a quantum state in information theory,
using density operators.



Definition 12. Let HA be an Hilbert space associated with a
quantum system A, a quantum state, or state, is a density operator
ρA on HA.

The following definitions and properties enlighten how density
operators are used in quantum information theory.

Definition 13 (Pure / Mixed States). Let ρ P DpHq a quantum state.
ρ is said to be pure if its rank is equal to one. Otherwise, it is said
to be a mixed state.

The notion of purity can be interpreted as a notion of certainty.
There might be randomness on measurement, according to Born’s
rule, however if the state is pure, we are sure of which state the
quantum system is in.

Proposition 19. Let H be an Hilbert space, a quantum state ρ P

DpHq is pure if and only if there exists |ψy P H such that

ρ “ |ψy xψ| (63)

Corollary 5. Let H be an Hilbert space, let ρ P DpHq a mixed
quantum state, then there exists p1, ..., pr a probability distribution
and ρ1, ..., ρr pure quantum states in DpHq such that

ρ “

r
ÿ

i“1

piρi (64)

Then ρ can also be expressed in a vector notation by spectral theorem

ρ “

r
ÿ

i“1

pi |ψiy xψi| (65)

with |ψ1y , ..., |ψry orthogonal states.

Proposition 20. Let H be an Hilbert space, let ρ P DpHq, then

Tr
`

ρ2
˘

ď 1 (66)

with equality if and only if ρ is pure.

In quantum information, and generally in information theory, it is
common to consider multipartite system. For example, the coupling
of two random variables pX,Y q will usually be studied for bipartite
communication through channel. Here, we define such multipartite
system for quantum information.

Definition 14 (Hilbert Space of multipartite system). If we con-
sider A1, ..., An quantum systems with associated Hilbert spaces
H1, ...,Hn, the Hilbert space associated to the multipartite system
A1...An is H1 b ...b Hn, where b denotes the tensor operation.

It is relatively easy to see that if ρ1 P DpH1q and ρ2 P DpH2q,
then ρ1 b ρ2 P DpH1 bH2q. However, the converse is not generally
true : if ρ P DpH1 b H2q, ρ may be not equal to ρ1 b ρ2 for
any ρ1 P DpH1q and ρ2 P DpH2q. We introduce definitions for
multipartite states.

Definition 15 (Product State). Let H1, ...,Hn be Hilbert spaces, let
ρ P DpH1 b ...b Hnq be a density operator on product space. ρ is
said to be a product space if

Dρ1 P H1, ..., Dρn P Hn, ρ “ ρ1 b ...b ρn (67)

Definition 16 (Separable / Entangled States). Let ρ P DpH1 b ...b

Hnq, ρ is said to be separable if it is convex combination of product
states. Otherwise, the state is said to be entangled.

Consider that AB is a bipartite state of Hilbert space HA b HB .
We would like to have a linear map such that given a state of DpHAb

HBq, we get the state of system A. This motivates the definition of
partial trace

Definition 17 (Partial Trace). Let HA,HB be Hilbert spaces, the
partial trace over HB TrB is defined as the unique linear map such
that

TrB p|a1y xa2| b |b1y xb2|q “ |a1y xa2| Tr p|b1y xb2|q (68)

@ |a1y , |a2y P HA,@ |b1y , |b2y P HB

This can be seen as the operation of marginalization for classical
random variables, from pX,Y q we get X . Here, from ρAB , we get
ρA the reduced operator on A.

Definition 18 (Reduced operator). Let HA,HB be two Hilbert
spaces, let ρAB

P DpHA b HBq, we define the reduced operator
ρA on A

ρA “ TrB
´

ρAB
¯

(69)

In quantum information theory, we can define channel as super-
operators mapping density operators. To be well-defined and for
operational purpose such maps must verify some axioms.

Definition 19. Let H and H1 be two Hilbert spaces. A map Φ is
said to be a channel if it verifies

1) Convex-linearity : for any pp1, ..., pnq and ρ1, ..., ρn such that
∥p∥1 “ 1, we have

Φ

˜

n
ÿ

i“1

piρi

¸

“

n
ÿ

i“1

piΦpρiq. (70)

2) Complete Positivity : for any Hilbert space HR, for any ρR
in DpHRq and for any ρ P DpHq, ρR b Φpρq is semi-definite
positive.

Remark 20. One would consider that only positivity, i.e. Φpρq ě 0
for any ρ, should be verified. However, tensorization is a key oper-
ation in quantum information. In particular, if we consider bipartite
states ρA b ρB and if we want to act only on ρB , our operation
may lead to a matrix that cannot be considered as a state. A well-
known example of positive but not completely positive map is the
transposition (see [14] Box 8.2).

An extension of bistochastic matrix for superoperators are the uni-
tal channels. These can be used to defined an analogous majorization
order on density operators.

Definition 20. A channel Φ is said to be unital if Φ
`

1
d
Id
˘

“ 1
d
Id.

Remark 21. We recall that a matrix P is said to be bistochastic
whenever all its coefficients are non-negative, uTP “ uT and Pu “

u. In other words, P as an operator on ∆d admits as one of its fixed
point u. Similarly, Φ admits as one of its fixed point the uniform
density matrix.

Theorem 5. Let ρ, σ P DpHq, ρ ď σ if and only if there exists a
unital channel Φ such that ρ “ Φpσq.

Proof: A proof of this theorem can be found in [1].

B. Computation of Steepest and Flattest Approximation
Let ϵ ą 0 and x P ∆d. We present here the construction xϵ. If

∥x ´ δ∥1 ď ϵ, then xϵ “ δ. Otherwise, we can define an integer
l P t1, ..., du such that

l´1
ÿ

i“1

xi `
ϵ

2
ď 1 (71)

and
l
ÿ

i“1

xi `
ϵ

2
ą 1. (72)



xϵ is then defined by

pxϵqk “

$

’

’

’

&

’

’

’

%

x1 ` ϵ
2

if k “ 1

xk if 1 ă k ă l

1 ´
řl´1

i“1 pxϵqi if k “ l

0 otherwise.

(73)

We then present the construction of xϵ. If ∥x ´ u∥1 ď ϵ, then
xϵ “ u. Otherwise, consider the following functions for p, q P r0, 1s.

γ1px, pq “

d
ÿ

i“1

pxi ´ pq
` (74)

γ2px, qq “

d
ÿ

i“1

pq ´ xiq
` . (75)

We then compute p˚ and q˚ such that γ1px, p˚
q “ ϵ

2
and

γ2px, q˚
q “ ϵ

2
. These can be explicitly computed. Consider l to

be the integer such that

γ1px, xlq ď
ϵ

2
ă γ1px, xl`1q (76)

then, xl`1 ă p˚
ď xl (γ1 is decreasing in p). We can then simplify

the sum

γ1px, p˚
q “

l
ÿ

i“1

xi ´ p˚ (77)

“

l
ÿ

i“1

xi ´ lp˚ (78)

“
ϵ

2
. (79)

Hence,

p˚
“

1

l

˜

l
ÿ

i“1

xi ´
ϵ

2

¸

. (80)

Similarly, denote r the integer such that

γ2px, xr`1q ď
ϵ

2
ă γ2px, xrq. (81)

Then, xr ď q˚
ă xr´1 because γ2 is increasing in q. As a

consequence, we can simplify γ2

γ2px, q˚
q “

d
ÿ

i“r

q˚
´ xi (82)

“ pd´ r ` 1qq˚
´

d
ÿ

i“r

xi. (83)

Hence, we have

q˚
“

1

d´ r ` 1

˜

d
ÿ

i“r

xi `
ϵ

2

¸

. (84)

The flattest is then explicitly defined using p˚ and q˚.

pxϵqk “

$

’

&

’

%

p˚ if k ď l

xk if l ă k ă r

q˚ otherwise.
(85)

C. Proofs
Proof of Proposition 2.

Proof: We are going to show successively that pxϵ1qϵ2
P

Bϵ1`ϵ2pxq and xϵ1`ϵ2 P Bϵ2 pxϵ1q.
The first one comes directly from triangle inequality

∥x´ pxϵ1qϵ2
∥1 “ ∥x´ xϵ1 ` xϵ1 ´ pxϵ1qϵ2

∥1 (86)

ď ϵ1 ` ϵ2 (87)

Hence, pxϵ1qϵ2
P Bϵ1`ϵ2pxq, thus pxϵ1qϵ2

ď xϵ1`ϵ2 . The second one
is quite handy. Denote respectively m “ m pxϵ1q and l “ m pxϵ1`ϵ2q.
We also write µϵ for xϵ.

d
ÿ

i“1

∣∣µϵ1
i ´ µϵ1`ϵ2

i

∣∣ “
∣∣µϵ1

1 ´ µϵ1`ϵ2
1

∣∣ `

d
ÿ

i“2

∣∣µϵ1
i ´ µϵ1`ϵ2

i

∣∣
“
ϵ2
2

`

d
ÿ

i“l

∣∣µϵ1
i ´ µϵ1`ϵ2

i

∣∣

If m “ l, then

ϵ2
2

`

d
ÿ

i“l

∣∣µϵ1
i ´ µϵ1`ϵ2

i

∣∣
“
ϵ2
2

`

∣∣∣∣∣1 ´

l´1
ÿ

i“1

µϵ1
i ´

˜

1 ´

l´1
ÿ

i“1

µϵ1`ϵ2
i

¸∣∣∣∣∣
“
ϵ2
2

`
ϵ2
2
.

If l ă m (by construction l ď m), then we have

ϵ2
2

`

d
ÿ

i“l

∣∣µϵ1
i ´ µϵ1`ϵ2

i

∣∣
“
ϵ2
2

`
∣∣µϵ1

l ´ µϵ1`ϵ2
l

∣∣ `
∣∣µϵ1

m ´ µϵ1`ϵ2
m

∣∣ `

m´1
ÿ

i“l

xi

“
ϵ2
2

`

∣∣∣∣∣1 ´

l´1
ÿ

i“1

µϵ1
i ´ xl

∣∣∣∣∣ `

∣∣∣∣∣1 ´

m´1
ÿ

i“1

µϵ1`ϵ2
i

∣∣∣∣∣ `

m´1
ÿ

i“l

xi

“
ϵ2
2

` xl `

l´1
ÿ

i“1

µϵ1
i ´

m´1
ÿ

i“1

µϵ1`ϵ2
i `

m´1
ÿ

i“l

xi

“
ϵ2
2

`
ϵ2 ` ϵ1

2
´
ϵ1
2

´

m´1
ÿ

i“l

xi `

m´1
ÿ

i“l

xi

“ ϵ2.

Hence xϵ1`ϵ2 P Bϵ2 pxϵ1q, thus xϵ1`ϵ2 ď xϵ1 ϵ2
. Therefore, we have

equality between the two vectors.
Proof of Proposition 3.

Proof: See [9] to have more details on the construction of xϵ.
We can show that the construction of xϵ depends on the construction
of p, q P r0, 1s such that

γ1pp, xq “

d
ÿ

i“1

pxi ´ pq
`

“
ϵ

2

γ2pq, xq “

d
ÿ

i“1

pq ´ xiq
`

“
ϵ

2
.

When p, q are found, pxϵqi “ p if xi ě p, pxϵqi “ q if xi ď q and
otherwise pxϵqi “ xi. In particular, we denote lϵI the greatest integer
such that xlϵ

I
ě p.



Consider p, q defined for xϵ1 , p1, q1 for
´

xp1q
ϵ1

¯p1q

ϵ2

and p2, q2 for

xϵ1`ϵ2
. We have γ1 px, pq ` γ1

`

xϵ1 , p
1
˘

“
ϵ1`ϵ2

2
, then

ϵ1 ` ϵ2
2

“

d
ÿ

i“1

pxi ´ pq
`

`
`

xϵ1 ´ p1
˘`

“

l
ϵ1
I
ÿ

i“1

xi ´ p` p´ p1
`

d
ÿ

i“l
ϵ1
I

`1

`

xϵ1 ´ p1
˘`

“

d
ÿ

i“1

`

x´ p1
˘`

By unicity of p2, we know that p1
“ p2. Similarly, we can show that

q1
“ q2

γ2 px, pq ` γ2
`

xϵ1 , p
1
˘

“

d
ÿ

i“1

pq ´ xiq
`

`
`

q1
´ xϵ1

˘`

“

d
ÿ

i“rϵ2

q ´ xi `
`

q1
´ q

˘`

`

rϵ2´1
ÿ

i“1

`

q1
´ xϵ1

˘`

“

d
ÿ

i“rϵ2

q1
´ xi `

rϵ2´1
ÿ

i“1

`

q1
´ x

˘`

“

d
ÿ

i“1

`

q1
´ x

˘`

“
ϵ1 ` ϵ2

2
.

Hence, q1
“ q2.

Since p ě p1
“ p2 and q ď q1

“ q2. It follows that both vectors
are equal since

␣

i ď d ; xi ě p2
(

“

!

i ď d ;
`

xϵ1
˘

i
ě p2

)

. (88)

and
␣

j ď d ; xj ď p2
(

“

!

j ď d ;
`

xϵ1
˘

j
ď p2

)

. (89)

Proof of Lemma 1
Proof: Denote µϵ the steepest ϵ´approximation of x. We

assume there exists ϵ is such that µϵ
ď y, i.e. x is an interior point

of Spyq. We can consider ϵ as small as possible, such that µϵ also
has only non-null coordinates. Then, µϵ is defined as µϵ

1 “ x1 ` ϵ
2

,
µϵ
mpxq “ xmpxq ´ ϵ

2
and µϵ

i “ xi otherwise. The following relation
if verified

x ď µϵ
ď y and x ď y (90)

Assume there exists k ă mpyq ´ 1 ă mpxq such that
řk

i“1 xi “
řk

i“1 yi. By the above majorization relation, we get
k
ÿ

i“1

xi “

k
ÿ

i“1

µϵ
i “

k
ÿ

i“1

yi. (91)

However,
řk

i“1 µ
ϵ
i “

řk
i“1 xi ` ϵ

2
. Whence, we have ϵ “ 0, which

contradicts our initial hypothesis.

Conversely, assume that
řk

i xi ă
řk

i yi for all k ă mpyq. Then,
denote ϵ ď min1ďkămpyqt

řk
i yi ´ xiu such that xmpxq ´ ϵ

2
ą 0,

then µϵ has mpxq non-null coefficients and
k
ÿ

i“1

µϵ
i “

k
ÿ

i“1

xi `
ϵ

2
ď

k
ÿ

i“1

xi `

k
ÿ

i“1

yi ´ xi “

k
ÿ

i“1

yi. (92)

Hence µϵ
ď y, i.e. x is an interior point of Spyq.
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